If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2(x^2+7x+10)=0
We multiply parentheses
2x^2+14x+20=0
a = 2; b = 14; c = +20;
Δ = b2-4ac
Δ = 142-4·2·20
Δ = 36
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{36}=6$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-6}{2*2}=\frac{-20}{4} =-5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+6}{2*2}=\frac{-8}{4} =-2 $
| 16x^2-120x-180=0 | | 3(x+7)=2x+19 | | 2-2.1n=1.16 | | (x+350)+(x)+(x÷2)=3950 | | t×(2t^2-7t+7)-2=0 | | (x+350)+x+(x÷2)=3950 | | 3√x-8=3 | | 3x/5=2x/3+3 | | x/3+5/6=7x+1/3 | | 6x/5=5x/4+1 | | 3t-2t=1 | | (6/y)+(2/5)=(6/5y) | | 1.5x+40x=1000 | | X+(x+1)+(x+2)=756 | | √y2−7y−√y+9=0 | | x3+12=52-2x | | 3(y+3)=-7y+19 | | -8x-16=8(x+8) | | 9(x+7)=135 | | -0.10(51)+0.80x=0.05(x-12) | | 55=5/6n=5 | | 6(x-2)/3=2(x+4)/7 | | -6(w-5)=-3w+36 | | -6(w+5)=-3w+36 | | -7u-40=-9(u+4) | | 4w^2-23w-6=0 | | 4(v-5)-8v=-4 | | 17(x-22)-13(x-22)=44 | | 5/4(2w+11)+1/2=-3/4 | | 2y=1=8 | | 8(x+5)+2x=10 | | 17(x-22)-13(x-22=44 |